Dietary Therapy in Hypertension
Frank M. Sacks, M.D., and Hannia Campos, Ph.D.

From the Department of Nutrition, Harvard School of Public Health (F.M.S., H.C.); and Channing Laboratory and Cardiology Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School (F.M.S.) — all in Boston. Address reprint requests to Dr. Sacks at the Department of Nutrition, Harvard School of Public Health, Bldg. 1, 2nd Fl., Boston, MA 02115, or at fsacks@hsph.harvard.edu.

A 57-year-old woman presents to an outpatient clinic for evaluation of hypertension. She has no history or symptoms of cardiovascular disease and reports having gained 15 kg over the past 30 years. Her blood pressure is 155/95 mm Hg, her weight 86 kg, her height 165 cm, her body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) 31, and her waist circumference 98 cm. Her serum triglyceride level is 175 mg per deciliter (2.0 mmol per liter), high-density lipoprotein cholesterol 42 mg per deciliter (1.1 mmol per liter), low-density lipoprotein cholesterol 110 mg per deciliter (2.8 mmol per liter), and glucose 85 mg per deciliter (4.7 mmol per liter). Her clinical profile is thus consistent with the metabolic syndrome. She is a nonsmoker, is sedentary, and eats a diet that is high in white bread, processed meats, and snacks and drinks containing sugars and sodium and is low in fruits and vegetables. She is interested in adopting a healthier lifestyle.

THE CLINICAL PROBLEM

Hypertension is defined as a systolic blood pressure of 140 mm Hg or higher or a diastolic blood pressure of 90 mm Hg or higher. However, morbidity increases among persons whose blood pressure is above 115/75 mm Hg. High blood pressure is associated with an increased risk of stroke, myocardial infarction, heart failure, renal failure, and cognitive impairment. Systolic blood pressure above 115 mm Hg is the most important determinant of the risk of death worldwide, being responsible for 7.6 million cardiovascular deaths annually. From 1960 through 1991, blood pressure decreased in the United States, and after the first 10 years of this interval, the rate of cardiovascular deaths decreased. Effective hypertension screening and treatment were probably the reason for these beneficial trends. However, from 1990 through 2002, blood pressure increased, and Intake of fruits and vegetables and adherence to healthful dietary patterns declined during this period and the prevalence of abdominal obesity increased; both trends have contributed to hypertension.

Among most populations in industrialized countries, the prevalence of hypertension increases dramatically with age; in the United States it rises from about 10% in persons 30 years of age to 50% in those 60 years of age. However, some persons, including strict vegetarians, and those whose sodium intake is low, have virtually no increase in hypertension with age.

PATHOPHYSIOLOGY AND EFFECT OF THERAPY

Essential hypertension is the name for hypertension that cannot be attributed to a specific renal or adrenal disease, such as chronic renal failure or an adrenal tumor;
the vast majority of patients with hypertension have essential hypertension. The pathophysiology of essential hypertension is complex, with much remaining to be discovered (Fig. 1, and Section 1 in the Supplementary Appendix, available with the full text of this article at NEJM.org). The three cornerstones of dietary treatment of hypertension — a healthful dietary pattern, reduced sodium intake, and reduced body fat — influence the pathophysiology of hypertension at many of its points of control.

High sodium intake is strongly correlated with the development of hypertension.16-18 Sodium intake initiates an autoregulatory sequence that leads to increased intravascular fluid volume and cardiac output, peripheral resistance, and blood pressure. The elevation in blood pressure results in a phenomenon called pressure natriuresis, in which increased renal perfusion pressure leads to increased excretion of fluid and sodium. In essential hypertension, however, sodium excretion is impaired. It is hypothesized that in most cases essential hypertension is a genetic disorder involving many individual genes, each of which influences the body’s handling of sodium to varying degrees18 and becomes expressed in the context of an unhealthful dietary environment, particularly one characterized by excessive intake of salt.

Numerous other factors contribute to the pathophysiology of hypertension. Especially in the elderly, large conduit arteries such as the aorta and carotid arteries become stiff and less compliant, increasing systolic blood pressure.19 Proliferation of smooth-muscle cells and endothelial dysfunction occur in resistance vessels, including small arteries and arterioles, causing vasoconstriction and increasing peripheral vascular resistance.20-22 Although the systemic renin–angiotensin–aldosterone axis is often suppressed in the presence of elevated blood pressure, angiotensin II activity is increased locally in various tissues, including the kidneys, vascular endothelium, and adrenal glands.23,24 Increased activity in the sympathetic nervous system may also be a factor.25-30 Both aging19,31-33 and obesity25-30 contribute to the pathogenesis of hypertension through several mechanisms (Fig. 1, and Section 1 in the Supplementary Appendix).

Two effective interventions for lowering blood pressure in patients with hypertension are reducing sodium intake and reducing weight. Reductions in dietary salt lessen the amount of sodium the kidney has to excrete to restore normal blood volume. Compliance in the aorta and carotid artery in older patients with hypertension is improved when sodium intake is reduced.34 Reduction in sodium intake also improves arterial vasodilatation.21,22 Weight loss moderates activation of the renin–angiotensin–aldosterone axis35,36 and the sympathetic nervous system37,38 and diminishes sodium retention.39 Decreases in abdominal visceral fat also improve the functioning of both conduit and resistance vessels.40

In addition to sodium restriction and weight loss, several other dietary modifications that are collectively termed “a healthful dietary pattern” have been shown to reduce blood pressure. Although the mechanisms of these diets have not been fully clarified, adherence to these diets has been found to reset the pressure–natriuresis curve so that a lower pressure suffices to excrete sodium and reduce blood volume,41 reduce aortic stiffness,42 and improve vasodilatation in small resistance vessels.43,44 As compared with the typical U.S. diet, the kinds of dietary patterns that have been proved to lower blood pressure emphasize fruits, vegetables, and low-fat dairy products; include whole grains, poultry, fish, and nuts; make use of unsaturated vegetable oils; and contain smaller amounts of red meat, sweets, and sugar-containing beverages.45,46 Clinical trials of such diets have not usually emphasized the identification of specific nutrients or single foods that lower blood pressure but rather have used epidemiologic data to define dietary patterns, such as Mediterranean-style diets47,48 and vegetarian diets.11,12 (see Section 2 in the Supplementary Appendix for a discussion of the effects of specific foods and nutrients on blood pressure).

CLINICAL EVIDENCE

The most carefully studied and established healthful dietary patterns are the Dietary Approaches to Stop Hypertension (DASH) diet,45,49 variants of that diet,46,50 and variations of the Mediterranean diet.51,52 In the original DASH trial,49 459 adults whose systolic blood pressure was less than 160 mm Hg and whose diastolic blood pressure was 80 to 95 mm Hg, 133 of whom had hypertension, were randomly assigned to a control diet typical of the average U.S. diet, a diet rich in fruits and vegetables, or a combination diet rich in fruits, vegetables, and low-fat dairy products and relatively low in saturated and total fat. Sodium intake and body weight were maintained at...
High-sodium, high-calorie diet

- Increased sympathetic nervous system activity
- Large conduit arteries become less compliant
- High sodium level activates local angiotensin II in heart and arteries
- Increased blood pressure
- Increased cardiac output
- Abnormal pressure natriuresis and sodium retention
- Increased tissue angiotensin II in kidneys and adrenal glands
- Abdominal fat further increases conduit artery stiffness, sympathetic nervous system activity, and angiotensin II levels

Low-sodium, low-calorie diet

- Weight loss reduces sympathetic nervous system activity
- Weight loss, low sodium intake, and healthy diet reduce stiffness of large conduit arteries
- Healthy diet improves renal sodium excretion
- Weight loss, low sodium intake, and healthy diet improve function of small resistance vessels and decrease peripheral resistance
- Decreased abdominal fat

Figure 1. Mechanisms Linked to Increases in Blood Pressure and the Therapeutic Effects of Healthful Dietary Patterns, Sodium Reduction, and Weight Loss.
constant levels. After 8 weeks, among the participants with hypertension, the diet rich in fruits and vegetables reduced systolic and diastolic blood pressure by 7.2 and 2.8 mm Hg more, respectively, than the control diet (P<0.001 and P=0.01, respectively). The combination diet resulted in greater reductions (11.4 and 5.5 mm Hg, respectively, as compared with the control diet; P<0.001 for each). The effects were less pronounced among participants who did not have hypertension at baseline.

In a subsequent trial, the effect of various levels of sodium intake was studied in the context of the DASH diet in 412 participants with blood pressure levels at enrollment similar to those of participants in the original DASH trial. Patients were randomly assigned to either the DASH “combination” diet (now commonly termed the DASH diet) or a control diet. Participants in each group were then given a diet with high, intermediate, and low levels of sodium (3.5, 2.3, and 1.2 g per day, respectively) for 30 days each in random order. Body weight was held constant by adjusting total caloric intake. Reducing sodium intake resulted in a significant incremental reduction in both systolic and diastolic blood pressure in both groups (Fig. 2).

In a secondary analysis from the sodium trial, the blood-pressure–lowering effects of the DASH diet and low sodium were each accentuated as age increased (Fig. 3). Systolic blood pressure was 12 mm Hg higher among participants between 55 and 76 years of age than among those between 21 and 41 years of age when they were given a typical U.S. diet that was high in sodium. This difference in systolic blood pressure is similar to that in the U.S. population when the same age groups are compared. In marked contrast, systolic blood pressure was the same among older and younger participants when they were given the DASH diet with low sodium content. This finding suggests that the typical rise in blood pressure that occurs with age during adult life may be prevented or reversed if the low-sodium DASH diet is followed.

Women, blacks, and those with the metabolic syndrome have a mildly enhanced reduction in blood pressure in response to a low-sodium diet. It is not possible to identify individual patients for whom sodium reduction is especially effective (see Section 3 in the Supplementary Appendix).

Two reduced-carbohydrate versions of the DASH diet were studied in 164 adults enrolled in the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OmniHeart). One diet higher in unsaturated fat and another higher in protein were compared with a diet similar to the standard DASH diet but slightly higher in carbohydrates. As compared with the high-carbohydrate diet, the high-protein diet reduced mean systolic blood pressure in participants with hypertension by 3.5 mm Hg and mean diastolic blood pressure by 2.4 mm Hg (P=0.006 and P=0.008, respectively). The comparable effects of the diet high in unsaturated fat were 2.9 and 1.9 mm Hg, respectively (P=0.02 for both). As with the DASH diet itself, these effects were less pronounced in participants who did not have hypertension at baseline.

The traditional Mediterranean diet has many similarities to DASH-type diets, especially...
to the diet from the OmniHeart study that was higher in unsaturated fat. In controlled trials involving patients with the metabolic syndrome or type 2 diabetes, a reduced-carbohydrate Mediterranean diet lowered blood pressure and improved serum lipid levels more than a low-fat diet. In these trials, unlike the DASH trials, weight was not held constant through caloric adjustment; in both cases, patients assigned to the Mediterranean diet lost more weight than those assigned to the low-fat diet.

Epidemiologic studies generally support evidence from clinical trials on the effects of dietary management, as do community-based and clinic-based intervention programs (see Sections 4 and 5 in the Supplementary Appendix).

The effect of adding weight loss to the DASH diet was evaluated in 144 adults in the Exercise Clinic-based intervention programs (see Sections 4 and 5 in the Supplementary Appendix).

Figure 3. Effects of a Low-Sodium DASH Diet on Systolic Blood Pressure with Increasing Age.

A total of 412 participants were randomly assigned to follow a DASH diet (208 participants) or a typical U.S. diet (control group, 204 participants) for 90 days. During that period, each group consumed three versions of the diet adjusted for daily sodium content: high (3.5 g), intermediate (2.3 g), and low (1.2 g). The participants in each group consumed each of the sodium-adjusted diets for 30 days in a crossover design; body weight was held constant. Mean (±SD) systolic blood pressure is depicted for the DASH group during the period of low sodium intake and for the control group during the period of high sodium intake, according to age, at the end of the 30-day period; there were 45 to 58 participants per group in each of the four age ranges shown. The slope for the control group during the period of high sodium intake was 0.3 mm Hg per year, spanning 30 years. The slope for the DASH-diet group during the period of low sodium intake was 0 mm Hg per year. 1 bars denote 95% confidence intervals. Data are from Sacks et al.

CLINICAL USE

Dietary management is appropriate for all patients with hypertension. In addition, patients with prehypertension (systolic blood pressure between 120 and 139 mm Hg or diastolic blood pressure between 80 and 89 mm Hg) should adopt the same dietary changes, given the benefit of dietary therapy at these blood-pressure levels.

Drug therapy plays an essential role in treating hypertension. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure emphasizes that in patients for whom lifestyle modification (including dietary therapy, physical activity, and moderation of alcohol consumption) does not reduce blood pressure below 140/90 mm Hg (or 130/80 mm Hg for patients with diabetes or chronic renal disease), drug therapy should be implemented and modified over time given a patient’s response. However, medication should not supplant dietary management; rather, the two forms of treatment should be considered complementary. The DASH diet is effective in combination with angiotensin-receptor blockers. Sodium reduction is highly effective in older patients with hypertension who are taking antihypertensive medicines and in those with resistant hypertension taking several antihypertensive agents.

We guide patients in adopting a healthful diet with the use of a chart or table such as that shown in Table 1. In simple terms, we encourage patients to eat poultry, fish, nuts, and legumes instead of red meat; low-fat and nonfat dairy products instead of full-fat dairy products; vegetables and fruit instead of snacks and desserts high in sugars; breads and pastas made from whole grain instead of white flour; fruit itself...
rather than fruit juice; and polyunsaturated and monounsaturated cooking oils such as olive, canola, soybean, peanut, corn, sunflower, or safflower rather than butter, coconut oil, or palm-kernel oil. Table 1 provides information about the number of servings and portion sizes for each type of food that should be consumed in 1 week.

Adopting a healthful dietary approach means making the correct choices at the market so that the most healthful foods will be available at home. The recommendations in Table 1 include a food-shopping guide. In the United States, it is common to place healthful foods at the periphery of the market; most weekly shopping should be concentrated there. Use of canned and processed foods should be limited, unless their salt content has been reduced or virtually eliminated. For convenience, low-sodium, frozen, or canned vegetables can be substituted for fresh ones. Sections of the market that contain sweetened beverages, candies, and cookies should be avoided entirely.

Sodium restriction is central to the dietary management of hypertension. Patients should become familiar with reading the food labels that specify the sodium content of packaged and processed foods. Processed foods are often high in sodium. A low-sodium diet is sometimes less palatable for patients who are accustomed to a high-sodium diet; however, tastes adapt quickly, and studies have shown that low-sodium diets can be as acceptable to patients as higher-sodium diets. Herbs, spices, and citrus fruit (juice or peel) and other acidic ingredients such as vinegar can be added to dishes to compensate for low sodium content and may even be preferred over foods with higher amounts of sodium.

Patients should not skip meals, should consume one third of their daily food intake at breakfast, and should limit eating in restaurants to no more than once weekly. Eating in many restaurants subverts the goal of a low-sodium diet, since one serving of some soups, sandwiches, fried chicken, or pizza can far exceed the total recommended daily amount of sodium. The health care reform law includes a requirement that all chain restaurants with more than 20 locations provide information for consumers regarding the amount of sodium and other dietary components in menu items. Compliance with dietary therapy is better, and success rates in achieving blood-pressure control are higher, when accompanied by active guidance or counseling of the patient by clinicians or ancillary medical personnel with expertise in dietary management. We always recommend that patients record their dietary intake for 1 or 2 weeks and discuss this record with a dietitian, who will provide specific meal plans. This is especially important when weight loss is needed. Follow-up with a dietitian is essential, whether arranged in individual or group appointments. In addition, numerous Web sites and books can provide patients with further information and guidance on healthful diets.

The costs associated with dietary treatment of hypertension are relatively modest. In one study in the Boston area conducted in 2006, the cost of the DASH meal plan was $31 per week in areas with low socioeconomic status and $40 per week in areas with high socioeconomic status; perceived affordability was similar for patients interviewed in clinics in both areas. An initial consultation with a dietitian costs approximately $150, and follow-up consultations about $100. Coverage of this service by health insurance or employer programs varies.

ADVERSE EFFECTS

Adverse events generally occurred less frequently in persons following the DASH diet and its variants or Mediterranean diets (see Section 6 in the Supplementary Appendix).

AREAS OF UNCERTAINTY

One crucial frontier of dietary research is that of devising and evaluating effective behavioral and community-based interventions. In the DASH trials, dietary modifications were studied over a short time span, and participants were carefully monitored for compliance. Compliance is an essential element in the long-term dietary treatment therapy of hypertension, and we need to learn what components of behavioral interventions lead to adherence. In addition, no large, long-term, clinical-outcomes trial of these diets has been performed, although one long-term observational study of an earlier randomized trial and one relatively short-term randomized trial reported a decrease in the incidence of cardiovascular events with sodium reduction (see Section 7 in the Supplementary Appendix). However, we believe that it is not necessary to conduct a large-scale, randomized trial to address this question in...
Table 1. Recommended Weekly and Occasional Food Purchases for One Person Following a Healthful Diet Containing 2100 kcal and 1500 mg of Sodium per Day.*

<table>
<thead>
<tr>
<th>Type of Food</th>
<th>Servings per Wk</th>
<th>Serving Size</th>
<th>Total Amount Purchased per Wk</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly purchases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market periphery</td>
<td></td>
<td></td>
<td></td>
<td>Do most weekly shopping in this section</td>
</tr>
<tr>
<td>Vegetables†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leafy greens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salad greens</td>
<td>4</td>
<td>1 cup</td>
<td>1–2 bags or heads</td>
<td>Lettuce, mixed spring greens, spinach bunch (about 1 lb)</td>
</tr>
<tr>
<td>Other greens</td>
<td>4</td>
<td>1/2 cup</td>
<td>1–2 bunches</td>
<td>Kale, collard greens, mustard greens (about 1 lb)</td>
</tr>
<tr>
<td>Cruciferous</td>
<td>3</td>
<td>1/2 cup</td>
<td>1–2 heads</td>
<td>Broccoli, cabbage, cauliflower (about 1 lb)</td>
</tr>
<tr>
<td>Colorful‡</td>
<td>15</td>
<td>1/2 cup</td>
<td>8–12 individual items</td>
<td>Tomatoes, carrots, squash, peppers, sweet potatoes, corn, eggplant, avocados (about 3 lb)</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>1/2 cup</td>
<td>1/2 lb</td>
<td>Celery, green beans, peas, lima beans, sprouts</td>
</tr>
<tr>
<td>Fruits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh</td>
<td>20</td>
<td>1 medium or 1/2 cup chopped</td>
<td>15–20 individual items</td>
<td>Apples, pears, grapes, bananas, peaches, plums, oranges, tangerines, berries, cantaloupe, pineapple</td>
</tr>
<tr>
<td>Dried</td>
<td>8</td>
<td>1/4 cup</td>
<td>1 bag</td>
<td>Raisins, apricots, prunes, cherries (about 1/2 lb)</td>
</tr>
<tr>
<td>Juice</td>
<td>4</td>
<td>1 glass (8 oz)</td>
<td>1 qt</td>
<td>Orange, grapefruit, unsweetened carrot</td>
</tr>
<tr>
<td>Herbs, alliums, and other seasonings</td>
<td>Use freely</td>
<td></td>
<td>Use freely</td>
<td>Thyme, ginger, garlic, onion, bay leaf, lemon juice</td>
</tr>
<tr>
<td>Meat, poultry, and fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish and shellfish</td>
<td>2</td>
<td>6–8 oz</td>
<td>1 lb</td>
<td>Cod, sea bass, halibut; fresh or canned salmon, tuna, or sardines; mollusks, shrimp, crabmeat</td>
</tr>
<tr>
<td>Poultry</td>
<td>2</td>
<td>6–8 oz</td>
<td>1 lb</td>
<td>Turkey, chicken, low-sodium cold cuts</td>
</tr>
<tr>
<td>Red meats</td>
<td>1</td>
<td>2–4 oz</td>
<td>1/4 lb</td>
<td>Beef, pork, lamb, low-sodium cold cuts</td>
</tr>
<tr>
<td>Dairy products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk</td>
<td>10</td>
<td>1 glass (8 oz)</td>
<td>1/2 gallon</td>
<td>Choose low-fat or nonfat products</td>
</tr>
<tr>
<td>Yogurt</td>
<td>3</td>
<td>1 cup</td>
<td>1 container</td>
<td>Choose low-fat or nonfat products (about 32 oz)</td>
</tr>
<tr>
<td>Cheese</td>
<td>4</td>
<td>1 slice</td>
<td>1/4 lb</td>
<td>Soft or hard</td>
</tr>
</tbody>
</table>
Processed-food aisles

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Comparison</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuts (whole or butter)</td>
<td>1 oz</td>
<td>1 bag or jar</td>
<td>Walnuts, almonds, peanuts (about 1/2 lb)</td>
</tr>
<tr>
<td>Legumes</td>
<td>1 cup</td>
<td>1 can or bag</td>
<td>Chickpeas, lentils, black beans (about 1 lb)</td>
</tr>
<tr>
<td>Olives</td>
<td>1/2 cup</td>
<td>1 jar</td>
<td>Black, green, stuffed (about 1/4 lb)</td>
</tr>
<tr>
<td>Spices</td>
<td>Use freely</td>
<td></td>
<td>Black pepper, cayenne, cinnamon, paprika</td>
</tr>
<tr>
<td>Baked goods</td>
<td>1 slice</td>
<td>1 bag</td>
<td>Bread, rolls, pancakes, waffles (about 1 1/2 lb); choose whole-grain products</td>
</tr>
<tr>
<td>Tomato products</td>
<td>2/3 cup</td>
<td>2 jars or cans</td>
<td>Sauce, juice, whole or diced (about 12 oz per jar or can)</td>
</tr>
<tr>
<td>Chips and other snacks</td>
<td>1/2 cup</td>
<td>3 bags</td>
<td>Tortilla chips, popcorn, pretzels (about 1 1/2 oz per bag)</td>
</tr>
<tr>
<td>Chocolate or sweets</td>
<td>1 oz</td>
<td>1 bar or similar amount</td>
<td>Granola bars, chocolate bars (about 1 oz)</td>
</tr>
</tbody>
</table>

Other food aisles (sweetened beverages, candy, cookies)

- **Skip these aisles**

Less frequent purchases

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast cereals</td>
<td>1/2 cup</td>
<td>1 1/2 cups</td>
</tr>
<tr>
<td>Pasta, rice, and grains</td>
<td>1 cup</td>
<td>1/2 cup</td>
</tr>
<tr>
<td>Cooking oils</td>
<td>1 tbs</td>
<td>3/4 cup</td>
</tr>
<tr>
<td>Table fats</td>
<td>1 tsp</td>
<td>1/3 cup</td>
</tr>
<tr>
<td>Salad dressings and mayonnaise</td>
<td>1 tsp</td>
<td>1/2 cup</td>
</tr>
<tr>
<td>Sugars</td>
<td>1 tsp</td>
<td>1/2 cup</td>
</tr>
<tr>
<td>Desserts</td>
<td>1/2 cup</td>
<td>1/2 cup</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Salt</td>
<td>1/3 tsp</td>
<td>2 1/3 tsp</td>
</tr>
</tbody>
</table>

* Patients should observe the following general recommendations: don’t skip meals, and consume one third of daily calorie intake at breakfast; limit eating out to once weekly and choose meals with a low salt content — just one slice of pizza, a turkey sandwich, or a pasta dish can easily contain 2000 mg of sodium. Examples of conversion from standard to metric measures: 1 oz equals 28 g; 1 teaspoon, 5 g; 1 cup leafy greens, about 75 g.
† Unsalted frozen or canned vegetables can be substituted for fresh vegetables.
‡ Choose at least four different types of vegetables from this category.
§ Also visit the processed-food aisle as needed for other food items in the less frequent purchases category.
¶ Look for lower-sodium, unsalted, or reduced-salt items. Compare brands and choose those with lower sodium content. The total amount of sodium consumed in a week from processed foods or eating out should not exceed 2000 mg.
‖ Weekly allowances are provided for items that are generally purchased less than once a week. The amounts for weekly intake should be set aside in individual containers to make it easier to keep track of how much is consumed.
view of the known benefits of healthful diets with regard to blood pressure and other risk factors.

GUIDELINES

We recommend the American Heart Association guidelines for cardiovascular health and the dietary management of hypertension. These guidelines endorse foods and approaches to diet similar to those included in the DASH diet and cite intake of 65 mmol, or 1.5 g, of sodium per day as optimal. In addition, a target BMI of less than 25 is recommended. Finally, the guidelines recommend no more than two alcoholic drinks per day for men and one for women and people of lighter weight. (One drink is equivalent to 12 oz of beer, 5 oz of wine, or 1.5 oz of 80-proof liquor, each of which represents approximately 14 g of ethyl alcohol.)

CONCLUSIONS AND RECOMMENDATIONS

The diet of the patient described in our vignette is very different from the healthful diets recommended for the management of hypertension, and it is therefore reasonable to assume that dietary change could normalize her blood pressure. The patient should be given written instructions on how to adopt a healthful diet such as the DASH diet, a reduced-carbohydrate version of the DASH diet, or a Mediterranean-style diet. The instructions should include ways to substantially reduce sodium intake. We also recommend a small consistent daily reduction in caloric intake of 200 to 300 kcal per day, coupled with an increase in physical activity. Her physician should schedule a consultation with a dietitian, including a regular schedule of follow-up visits. The patient should monitor her blood pressure at home, with an automated machine, at least once a month, preferably more frequently. A trial of intensive dietary treatment is warranted for 6 months to try to achieve the targeted goal for blood pressure (systolic blood pressure <140 mm Hg, diastolic blood pressure <90 mm Hg) before medication is introduced.

No potential conflict of interest relevant to this article was reported. Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

REFERENCES

training in obese metabolic syndrome sub-
hypocaloric diet with or without exercise
et al. Sympathetic neural adaptation to
38.

GW, Masuo K, Esler MD, Nestel PJ. Effects
37.
of dietary weight loss on sympathetic ac-
36.
erates to Stop Hypertension trial. JAMA
35.

Hall JE, The kidney, hypertension, and
36.

Seals DR, Moreau KL, Gates PE, Es-
33.
kura I. Modulatory influences on ageing of
the vasculature of healthy humans. Exp
32.

Zandi-Nejad K, Luyckx VA, Brenner
31.
BM. Adult hypertension and kidney dis-
ease: the role of fetal programming. Hyper-
30.
tension 2006;47:502-8.

Sealey JE, Blumenfeld JD, Bell GM,
29.
Pecker MS, Sommers SC, Laragh JH. On
the renal basis for essential hypertension:
neprhon heterogeneity with discordant
renin secretion and sodium excretion
causing a hypertensive vasoconstriction-
volume relationship. J Hypertens 1988;6:
763-77.

Safar ME, Temmar M, Kakou A, Lacol-
28.
ley P, Thornton SN. Sodium intake and
27.
volume relationship. J Hypertens 1988;6:

1:79-91.

Rocchini AP, Key J, Bondie D, et al.
The effect of weight loss on the sensitivity
of blood pressure to sodium in obese ade-
26.

Fierce GL, Beske SD, Lawson BR, et al.
25.
Weight loss alone improves conduit and
resistance artery endothelial function in
young and older overweight/obese adults.

Akiti S, Sacks FM, Svetkey LP, Conlin
24.
PR, Kimura G. Effects of the Dietary Ap-
proaches to Stop Hypertension (DASH)
diet on pressure-natriuresis relationship.

Al-Solaiman I, Jersi A, Zhao Y, Morrow
23.
JD, Egan BM. Low-sodium DASH reduces
oxidative stress and improves vascular
function in salt-sensitive humans. J Hum
Hypertens 2009;23:826-35.

Rallidis LS, Lekakis J, Kolomvatsou A,
et al. Close adherence to a Mediterranean
diet improves endothelial function in sub-
jects with abdominal obesity. Am J Clin
Nutr 2009;90:263-9; discuss 263-7.

McCall DO, McGartland CP, McKinley
22.
MC, et al. Dietary intake of fruits and veg-
etables improves microvascular function
in hypertensive subjects in a dose-dependent

Sacks FM, Obarzanek E, Windhauser
21.
MM, et al. Rationale and design of the
Dietary Approaches to Stop Hypertension
trial (DASH): a multicenter controlled-
feeding study of dietary patterns to lower
blood pressure. Ann Epidemiol 1995;5:
108-18.

Swain JF, McCarson PB, Hamilton EF,
20.
Sacks FM, Appel LJ. Characteristics of the
dietary patterns tested in the Optimal Ma-
nutrient Intake Trial to Prevent Heart
Disease (OmniHeart) options for a heart-
healthy diet. J Am Diet Assoc 2008;108:
257-65.

Trichopoulou A. Mediterranean diet:
the past and the present. Nutr Metab

Kokkinos P, Panagiotakos DB, Poly-
29.
chronopoulou E. Dietary influences on
blood pressure: the effect of the Mediter-
anean diet on the prevalence of hyperten-
sion. J Clin Hypertens (Greenwich) 2005;
7:165-70.

Appel LJ, Moore TJ, Obarzanek E, et al.
The effect of dietary patterns on blood
pressure: results from the Dietary Ap-
proaches to Stop Hypertension trial. N

Effects of protein, monounsaturated fat,
and carbohydrate intake on blood pressure:
results from the Dietary Approaches to
Stop Hypertension (DASH) diet and three
dietary sodium levels on blood pressure:
results of the DASH-Sodium Trial. Am J
Cardiol 2004;94:222-7. [Erratum, Am J
Cardiol 2010;105:579.]

Goff DC, Howard G, Russell GB, La-
barthe DR. Birth cohort evidence of popu-
lation influences on blood pressure in the

Enhanced sodium sensitivity and disturbed
circadian rhythm of blood pressure in es-
sential hypertension. J Hypertens 2006;24:
1627-32.

Chen J, Gu D, Huang J, et al. Meta-
bolic syndrome and salt sensitivity of
blood pressure in non-diabetic people in
China: a dietary intervention study. Lan-
cet 2009;373:829-35.

Obarzanek E, Proschan MA, Vollmer
28.
WM, et al. Individual blood pressure re-
ponses to changes in salt intake: results
from the DASH-Sodium trial. Hypertension

Blumenthal JA, Babyak MA, Hindler-
alone and in combination with exercise
and weight loss on blood pressure and car-
diovascular biomarkers in men and women
with high blood pressure: the ENCORE

Conlin PR, Ehringer TP, Bohannon A,
et al. The DASH diet enhances the blood
pressure response to losartan in hyper-
tensive patients. Am J Hypertens 2003;16:
337-42.

Whelton PK, Appel LJ, Espeland MA,
et al. Sodium reduction and weight loss in
the treatment of hypertension in older
persons: a randomized controlled trial of
nonpharmacologic interventions in the

Pimenta E, Gaddam KK, Oparil S, et al.
Effects of dietary sodium reduction on
blood pressure in subjects with resistant
hypertension. Hypertension 2009;54:475-
81.

Grimes CA, Riddell LJ, Nowson CA.
Consumer knowledge and attitudes to
salt intake and labelled salt information.

Karanja N, Lancaster KJ, Vollmer WM,
et al. Acceptability of sodium-reduced re-

Clinical Therapeutics

Role in Cardiovascular Disease. Circulation

Re RN. Mechanisms of disease: local
renin-angiotensin-aldosterone systems and
the pathogenesis and treatment of cardio-
vascular disease. Nat Clin Pract Cardio-

Landsberg L, Young JB. Diet and the
sympathetic nervous system: relationship
to hypertension. Int J Obes 1981;5:Suppl
1:79-91.

Esler M, Straznicky N, Eikelis N,
Masuo K, Lambert G, Lambert E. Mecha-
nisms of sympathetic activation in obesity-
related hypertension. Hypertension 2006;

Victor RG, Shafiq MM. Sympathetic
neural mechanisms in human hyperten-

Feldstein C, Julius S. The complex in-
teraction between overweight, hyperten-
sion, and sympathetic overactivity. J Am

Hall JC, Hildebrandt D, Kuo J. Obes-
ity hypertension: role of leptin and sym-
pathetic nervous system. Am J Hypertens
2001;14:1035-115S.

Hall JE. The kidney, hypertension, and

Seals DR, Moreau KL, Gates PE, Es-
kura I. Modulatory influences on ageing of
the vasculature of healthy humans. Exp

Zandi-Nejad K, Luyckx VA, Brenner
BM. Adult hypertension and kidney dis-
ease: the role of fetal programming. Hyper-
tension 2006;47:502-8.

Sealey JE, Blumenfeld JD, Bell GM,
Pecker MS, Sommers SC, Laragh JH. On
the renal basis for essential hypertension:
neprhon heterogeneity with discordant
renin secretion and sodium excretion
causing a hypertensive vasoconstriction-
volume relationship. J Hypertens 1988;6:
763-77.

Safar ME, Temmar M, Kakou A, Lacol-
ley P, Thornton SN. Sodium intake and
vascular stiffness in hypertension. Hypert-

Weight loss and the renin-angiotensin-
aldoosterone system. Hypertension 2005;45:
356-62.

Ho JT, Keogh JB, Bornstein SR, et al.
Moderate weight loss reduces renin and
aldoosterone but does not influence basal
or stimulated pituitary-adrenal axis func-

Straznicky NE, Lambert EA, Lambert
GW, Masuo K, Esler MD, Nestel PJ. Effects
of dietary weight loss on sympathetic ac-
tivity and cardiac risk factors associated
with the metabolic syndrome. J Clin Endo-
crinol Metab 2005;90:5998-6005.

Straznicky NE, Lambert EA, Nestel PJ,
et al. Sympathetic neural adaptation to
hypocaloric diet with or without exercise
training in obese metabolic syndrome sub-

78. Your guide to lowering your blood pressure with DASH. Bethesda, MD: National Heart, Lung, and Blood Institute, 2006.

